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We study the influence of external multiplicative noise on the elec- 
trohydrodyn~tmic instability (EHD) in nematic liquid crystals. It turns out that 
the correlation time z,v and the intensity Q of the noise are the crucial 
parameters to control the system. Different types of noise lead to minor quan- 
titative changes when compared to Gaussian white noise, leaving the qualitative 
aspects unchanged. With increasing noise intensity the threshold for the onset of 
the first instability changes drastically. We observe that the curvature arising 
when the threshold of the various instabilities is plotted as a function of the 
noise intensity changes as one is going, e.g., from the onset of Williams domains 
(WD) to the onset of the grid pattern (GP). This result reflects the transition 
in the flow structure from two-dimensional (WD) to three-dimensional 
(GP, DSM) flow patterns. As the intensity of the noise is increased further, the 
onset of the first instability becomes more complex. The measurement of the 
nonlinear onset time shows a strong dependence on the noise intensity Q, which 
is linear for WD and GP well above onset. The linear onset time shows an 
unexpected dependence on the noise intensity close to the onset of the first 
instability. For sufficiently long correlation times of the noise, a destabilization 
by noise is obtained. 

KEY WORDS: Spatial structures; multiplicative noise; electrohydro- 
dynamics; stabilization; destabilization; instability; pattern formation; colored 
noise; additive noise. 

1. I N T R O D U C T I O N  

Stochas t ic  processes can be classified into two types. The  mos t  c o m m o n  
processes are associa ted  with an addi t ive  r a n d o m  force. The o ther  class is 
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made up of stochastic processes containing a coupling between the 
stochastic variable and the random force. The former class has already 
been investigated in detail and is well understood. The latter type 
frequently are called multiplicative stochastic processes (MSP) and are not 
as well understood; a number of unsolved problems exist in the nonlinear 
domain. MSP have been investigated in various fields recently, such as in 
optical systems and lasers, ~x-14~ in the magnetic Fredericksz transition of 
nematic liquid crystals, (15 19) in electrical circuits, (2~ and in the elec- 
trohydrodynamics (EHD) of liquid crystals. (23 29) In EHD an MSP is 
realized when one applies externally an electric noise field together with the 
sinusoidal deterministic field to a thin layer of a nematic liquid crystal; this 
setup has been considered in refs. 23-29. 

For MSPs most theoretical studies and analog simulations concentrate 
on spatially uniform systems described by an equation of the form 
f i = f ( u ) +  g(u)~,(1 22.29 39) where ~ is typically Gaussian white noise. A 
broad variety of results emerges. The number of peaks of the stationary 
probability distribution can change as a function of the noise intensity; the 
relaxation rates of such a system can depend strongly on the noise intensity 
and the threshold value for the onset of an instability can be enhanced, i.e., 
externally applied noise (of multiplicative type) can induce the stabilization 
of a system. Detailed theoretical studies for the magnetic Fredericksz 
transition under the influence of an additional fluctuating magnetic field in 
nematic liquid crystals have been reported recently. ~15 19) According to 
these studies, the threshold field Hc for the onset of the Fredericksz 
transition increases with an increase of the strength of the external 
fluctuating magnetic field and with a decrease in the correlation time of the 
noise field. (15) 

These theoretical studies address one-variable systems without any 
spatial structure. The phenomena observed experimentally in spatially 
extended systems, however, should be discussed including spatial degrees of 
freedom/4~ and one needs to address the question of how multiplicative 
noise influences a spatial structure and its kinetics. Previous theories for 
MSP in EHD did not examine the spatial patterns explicitly and mainly 
concentrated on the explanation of the experimentally observed threshold 
shift for the onset of the first spatial structure. The influence of spatial 
variations on MSP is thus not well understood. 

In the present paper we report that for MSP in EHD transitions 
between different spatial structures are induced by the superposition of 
noise on a sinusoidal electric field and that the occurrence of these trans- 
itions depends systematically on the correlation time and the intensity of 
the noise (in ref. 41 we briefly indicated some of the results). In Section 2 
we describe the experimental setup, including the various types of applied 
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noise and the procedure used to evaluate the dynamic properties from the 
dynamic birefringence. In Section 3 the experimental results for MSP are 
described and discussed. Section 4 contains a summary and the conclusions 
emerging from the present study. 

2. EXPERIMENT 

2.1. Sample Preparation 

The compound used in the present study is the material MBBA 
[N-(p-methoxybenzylidene)-p-butylaniline], which shows a nematic phase 
at room temperature. This compound is sandwiched between two horizon- 
tal glass plates coated with SnO2 conducting electrodes. (42 45) The thickness 
d of the sandwiched cells used here ranges from 100 to 110 #m. The lateral 
dimensions are typically 100 times the thickness. The plates are rubbed to 
obtain homogeneous alignment. The threshold voltage Vc for Williams 
domains (WD) (f<fc) lies between 6 and 10 V, and Vc for the oscillatory 
instability of the director ( f  > fc) is between 40 and 300 V as a function of 
applied frequency. Here f and fc are the frequency of the applied field and 
the critical frequency separating two regimes, the conducting (f<fc) and 
the dielectric (f>fc) reg ime-(42 46) We paid special attention to aging 
effects of the sample. We waited, for example, until changes of Vc andfc  as 
a function of time became very small and then we used the sample. During 
one experiment (with a typical duration of 2 weeks) the changes of Vc and 
fc were less than 2%. We also used different samples for different 
experiments. Although we used a total of five different samples throughout 
the present study, we discuss here mainly the results for d close to 100/~m. 
The quantitative values measured depend on the sample but the qualitative 
behavior does not change. Vc was determined from the sharp decrease of 
the transmitted intensity of the light due to the onset of the spatial struc- 
ture. For this measurement of the threshold, we used a photodiode as a 
light, source and a phototransistor as a detector. The information thus 
obtained is for a large area of about 3 x 3 mm 2 in the present measurement 
of the threshold. The temperature during the experiments is controlled up 
to _+ 0.05 deg using a copper container with a double wall. 

2.2. Types of Externally Applied Noise 

Different types of noise are applied to the sample, which are realized 
by using a commercially available noise generator (NF Co. WG722), which 
produces a quasirandom noise with a period Tp~ 510 days for a 20-/~sec 
clock. 
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The interval distribution between two binary pulses can be described 
by a Poissonian distribution (Fig. 1), 

V n 

N(n, v)= ~.v e x p ( -  v) (1) 

where n is the unit time delay given by At/b, where At is the time interval 
between two successive pulses, and b is the minimum width of the binary 
pulse, which depends on the clock frequency of the shift register, for 
example, b = 20/tsec for a 20 #sec clock and 200 #sec for a 200-#sec clock. 
Since pulses are not generated by superposition, one cannot observe a 
pulse during a time lag At shorter than twice the pulse width 2b. 

In Fig. 1 we see that a Gaussian distribution 

(At-2bT  
N(At) = (2re) - ' /2 a~ l  exp ~ // (2) 

also fits quite well with parameters 2b = 40 #sec and at = 50 #sec, as shown 
by the dotted line. 

The experimentally observed power spectrum P(e)) agrees well with a 
Gaussian white noise spectrum up to f =  20 kHz (Fig. 2). Other types of 
noise are produced from this binary noise by filtering with a special elec- 
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Fig. 1. Generation probability density of the noise pulses for the 20 #sec clock used in the 
present study. The Gaussian distribution given in Eq. (2) is plotted as a dashed line. 
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Fig. 2. Power spectrum of a binary pulse. 
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Fig. 3. Probability density of the amplitudes for various types of noise. (a)Uniform 
(VN=2.65 V), (b) Gaussian (Vu=2.65 V), (c) binomial (VN=2.88 V). 
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trical technique. Figure 3 shows the probability density functions of the 
wave amplitudes used here. The intensity of the noise is determined by 
Q = v 2 = (v(0)  2) using a fast Fourier transform (FFT) analyzer (Iwatsu 
Co. SM-2100A). The correlation time of the noise is determined by taking 
the autocorrelation function or the bandwidth of the power spectrum using 
this analyzer. For the study of MSP, this external noise is superposed on 
the deterministic sinusoidal field and then applied to a liquid crystal 
sample. 

2.3. Measurement of the Temporal Evolution of the Director 
Angle Using Birefringence 

The method used is basically the same as the one used for the 
measurement of the evolution of the director angle in the Fredericksz 
transition of nematic liquid crystals. (47) We evaluate the linear time 
constant, exp( _+ t/ri~), using this type of dynamical birefringence technique. 
The director is initially aligned homogeneously at O = 0. Then we assume 
the following linear temporal evolution of the director: 

dq5 dO 
d---~=--~=r['(a) O (3) 

when an electric field larger than the theshold (V> Vc) is applied. Here 
e = (V 2 -  V2c)/V 2 and ~b is a potential. The precise expression for the coef- 
ficient ~-~ is complicated and depends on the elastic, dielectric, and viscous 
coefficients of the nematic liquid crystal. ~48~ When the external voltage is 
varied from Vo < Vc to VA > V o  the system falls into the most stable state 
of the potential curve ~A in Fig. 4, where Vo is a certain bias voltage lower 
than V o  used to obtain alignment parallel to the glass plates, and where 
VA is higher than Vc. 

Since a liquid crystal shows birefringence, the phase difference ~b 
between the ordinary and the extraordinary light beams passing through 
the sample gradually changes with the temporal change of the director 
angle according to the equation ~47) 

~b(t) = ( - ~  d)  02(t)(ne-no) (4) 

where ~c, r/e, and n o are the wavelength of the light and the refractive 
indices for an extraordinary and an ordinary light beam, respectively. Thus, 
the oscillation of the light intensity can be observed for each 2~ period of 
~b(t), following the temporal evolution of O(t). The experimental setup and 
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Fig. 4. Potential profile above threshold V c and below threshold V c. 

the oscillatory signal detected are shown in Fig. 5. Here N shows the Nth 
oscillation. The inverse of the interval is proportional to the slope of ~b. 
The time constant is obtained from the interval of these oscillations as 
follows: 

t N +  1 - -  t N  
~ = ( 5 )  

In [ (N + 1 )/N] 

according to Eq. (3). This holds only for small N and we always choose 
here N = 1. Qualitatively we can infer from the signal shown in Fig. 5 that 
the slope of q~ is very flat for the initial stage and for the steady state, but 
steep for the transient region (i.e., for the short interval of the signal shown 
in Fig. 5). 

In the same manner, we also measured the relaxation time, switching 
the field from VA to V0. The divergent tendencies as Vc is approached 
from both sides are clearly observed (Fig. 6). This dependence on e can be 
described by Eq. (3) in which zL is proportional to e-1. Another important 
time constant to describe the dynamics of the growth is the nonlinear 
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(a) Experimental setup and (b) an example of the detected signal. A: analyzer; HI, 
H2, H3: pin holes; HM: half-mirror; L: lens; P: polarizer. 

growth time, for which we chose the time zr in which 90 % of the final 
amplitude is reached and which contains the influence of the nonlinear 
effects not contained in Eq. (3). (26,28,29) 

3. RESULTS A N D  D ISCUSSION 

3.1. Convect ive Patterns in EHD 

When the field reaches Vo one finds first a roll pattern called 
Williams domains (WD) (Fig. 7a). As the voltage is increased, these rolls 
start to fluctuate in time with a characterictic s-dependence (fluctuating 
Williams domains, FWD) and eventually a transition to the grid pattern 
(GP) at VGv (typically at 1.5 2.0 times Vc) takes place (Fig. 7b). As the 
applied voltage is stepped up further, the spatially and temporally 
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Fig. 6. Linear relaxation time rL(V< Vc) and growth time ~L(V> Vc) as a function of 
applied voltage for sample 1: d= 100pm, aspect ratio (ratio of lateral dimension to cell 
thickness) 100. 

incoherent regime, usually called the dynamic scattering mode (DSM), is 
formed (Fig. 7c). Thus, many interesting dissipative structures have been 
observed in the EHD of nematic liquid crystals. (43~46"49) 

3.2. Ef fects  of  Mu l t ip l i ca t i ve  External  Noise 

3.2.1. Threshold Shifts for the Onset of Instabilities Induced by the 
Application of Various Types of External Noise. In Fig. 8 (d= ]00 #m, 
sample 3), typical results of the threshold shift for the first instability are 
plotted as a function of the strength of the noise VN (= Q1/2). Here we used 
two types of noise distinguished by the probability density distribution of 
the amplitude, namely uniform and binomial noise. The frequency of the 
deterministic field is 30 Hz and the correlation times are 65 and 5 #sec for 
both types of noise. As seen in Fig. 8, no dependence of the threshold shift 
on the amplitude distribution of the noise can be observed as long as z N is 
the same. We also stress that there is no dependence on the frequency of 
the deterministic field f for f <  50 Hz. Here we note a change in curvature 
of Vc(VN) at  V * ~  17 V. Theoretical studies predict a linear relation 
between the threshold shift and the amplitude of the noise, (33,35) but the 
slope of the experimental curve changes as a function of the noise strength. 

822/54/5-6-3 
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Fig. 7. Typical convective patterns observed in the conductive regime (f<fc) for sample 2: 
d=  100 #m, aspect ratio 50. (a) Williams domains (two-dimensional convective flow), (b) grid 
pattern (three-dimensional cellular convective flow), t43,44) (c)dynamic scattering mode 
(turbulent flow). 
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Phase diagram for two types of noise with different probability densities (binary and 
uniform) for sample 3: d=  100 ~m, aspect ratio 40, fc = 360 Hz. 

In particular, we cannot draw a straight line for "gN > "[7~V, as seen in Fig. 9 
(the definition of r*  is shown in Fig. 10). Therefore we fit our data to the 
equation 

Vc( VN) = 132 FN + #1 VN + #0 (6) 

for both curves for V N < V~v and V N > V~N, respectively, where #0, #~, and 
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Fig. 9. Dependence of the phase diagram on the correlation time T u. Note that the 
extrapolations converge into the threshold voltage for the onset of each instability (WD, GP, 
and DSM) even for negative slopes (sample 3). V* and V** are marked for ~'N = 5 ]~SCC. 
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Fig. 10. The coefficient f12 in Eq. (6) plotted as a function of VN. At Z~v ~ 255 sec, the coef- 
ficient changes from positive to negative values (sample 3). (O)  Vu < V*, ( A )  V* < VN < 
v**, (x) v**<v. 

f12 are coefficients obtained from the experimental results by the last-mean- 
square method. A higher noise intensity always leads to a stabilization of 
the periodic structure for ~u ~ "[C" These shifts can be intuitively explained 
qualitatively by taking into account that the external noise reduces the 
amount of space charge by inducing a random oscillation of the director of 
NLC, which must be stored to cause convection by the Carr-Helfrich 
mechanism. (42) 

The correlation time of the noise strongly influences the structure of 
the phase diagram. Figure 9 shows the dependence of the phase diagram on 
the correlation time zu of the externally applied noise. The measurements 
for various 'E N in Figs. 8 and 9 were done in the random sequence ~N = 5 ,  

65, 33, 318, 1047, 112, 189, 280, and 402 #sec to rule out completely the 
possibility that aging of the sample plays any role. As zu becomes shorter, 
the slope of the noise dependence in the phase diagram becomes steeper. 
On the other hand, as 'E N approaches the characteristic time Zc=(~c  I of 
the deterministically applied field, corresponding to 442 #sec ( fc  = 360 Hz), 
the condition ZN~ZC no longer holds and the slope becomes flatter. 
Increasing ZN further, we observe that the threshold shift happens toward 
the negative direction, i.e., a destabilization by noise results. 

When each curve between changes of curvature is fitted to Eq. (6), a 
systematic change of the coefficient f12, which characterizes the curvature, 
can be observed (Fig. 9). The crossover correlation time z* of the noise is 
obtained to be 255 #sec in this cell (d = 100 #m, F = 40), which is identical 
to 60% of the value of Zc (~442 #sec) for the oscillatory instability of 
EHD. For Z*U < "EN the noise works in a cooperative fashion with the deter- 
ministic field. Accordingly, the external noise can destabilize the system in 
this case. 
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We would like to stress the following results. The noise intensities for 
which a change in curvature occurs depend on TN; they are shifted to 
higher noise intensity for decreasing TN, which also leads to an increase in 
the slope. Extrapolations of respective parts of the curves for VN < V~, 
V* < VN < V**, and V** < VN give three characteristic voltages Vc(O) = 
7.6V, Vcl(O ) [~1 .5  Vc(0)], and Vc2(0) [~1.97 Vc(0)] for the inter- 
section at VN = 0, which respectively correspond to the thresholds of WD, 
of FWD, and of GP in the absence of the external noise. We note that we 
can observe DSM at threshold when VN is further increased. Here DSM 
represents the first strongly irregular pattern (although there are three 
types of DSM distinguished in the literatureS44.45)). From these obser- 
vations it can be concluded that for VN > V**, WD is unstable, whereas 
the GP is stable as the first pattern at the onset point (Fig. 9). That is, an 
exchange of the occurring stable spatial structure is induced by noise. 
Visual observations for these three regions appearing between changes in 
curvature are the following. For VN < V*,  steady WD are observed for the 
entire region of the cell. For V** < V N < V/~**, the GP is commonly for- 
med after fluctuations of rolls for a long but transient period of time, and 
for VN> V*** an irregular pattern, DSM, aperiodic in time and in space 
results. Here V*** is the threshold for the direct transition to DSM. (26) 
Between V* and V**, WD fluctuate irregularly with a characteristic 
distance of about four to eight rolls. 

All slopes, even for various ~u, converge into three characteristic 
voltages with different slopes for vanishing noise. The same happens for 
T N > T/~, that is, at least two changes in curvature have been observed and 
they converge into the respective characteristic voltages although those 
slopes are negative. This clearly demonstrates that noise influences different 
spatial patterns in different ways (Fig. 9). Such a dependence of the coef- 
ficient //2 is also apparent from Fig. 10. When there is a wide range of 
observation for VN, a number of changes in curvature corresponding to a 
number of successive transitions to fully developed turbulence are 
observed. (43~45) 

Figure 11 shows the correlation time dependence of the threshold Vc 
of a deterministic field for fixed VN. For constant VN, Vc increases with 
decreasing TN (Fig. l la).  The relation between V c and ~N 1 for fixed VN is 
roughly given by V c ,,, (V~ TN) 1/2 For a certain value of 72 N ( ~-- TON), V C 

becomes zero, which corresponds to the onset of convection without a 
deterministic field. In other words, the instability can also be induced by 
noise only without any deterministic field (i.e., Vc = 0), depending on the 
correlation time T N and the amplitude VN of the noise. From our 
experiments we can summarize our results in the empirical equation 

V~ 6.5 exp(A/TN) (volts) (7) 
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where A is approximately 375/~sec (Fig. 1 lb). V0N means here the threshold 
voltage of noise inducing the instability without a deterministic field and 
the factor 6.5V the threshold at a dc field (i.e., r u l = 0 ) .  The above 
empirical equation probably only holds within the region of parameter 
space explored in the present study. 

Another feature worth mentioning is the fact that although the 
threshold for DSM is monotonically increasing with increasing noise 
strength, the difference between the onset value for WD and for DSM is 
monotonically decreasing toward V***. The same holds for GP, although 
for a different threshold value of VN. 

3.2.2. Dynamica l  Propert ies. Figure 12 shows the noise dependence 
of the linear growth time obtained from the experimental results using 
Eq. (5). rL has a maximum value at the noise intensity Q ~ 5  V 2, which 
becomes larger with decreasing e (Fig. 13). Here Vc is determined from 
Vc(Q) for each Q ~ 0, since the threshold is shifted by the application of 
noise. Here Vco is Vc at Q = 0. The e-dependence of rL is changed in the 
presence of external noise, as shown in Fig. t4 for Q = 5.1 V 2. Figure 13 
shows the linear onset time as a function of Q near threshold (small e). ZL 
tends to diverge at Q close to 5 V 2 with decreasing e. Such an anomaly 
typically occurs when the noise amplitude VN is of the order of 10-20 % of 
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Fig. 12. Typical example of VL as a function of the deterministic voltage ( 'ON= 33 #sec) 
for two different noise intensities (sample 4: d = 100 #m, Vco = 6.68 V). (O)  V N = 1 V, 
(C)) VN = 2.8 V. 
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the deterministic amplitude Vc. The linear dependence of ZL on e for Q = 0 
is well understood from Eq. (3), but note that for Q =  5.1 V 2 the curve 
bends to ZL 1 =0 ,  approaching e=0.03 (Fig. 14). Here Vc(Q) is obtained 
by the extrapolation of ZL from large e. Accordingly, we do not actually 
observe a pattern at very small e. We find, however, that the pattern 
suddenly appears when e is increased. This might suggest that the transi- 
tion becomes discontinuous in the presence of noise/4~ Thus, the anomaly 
at Q ,~ 5 V 2 seems a feature worth noting. In fact, the flow scale 2x above 
Q ~ 5 V 2 seems to change discontinuously from that observed below. In 
Fig. 15 the wavenumber change of the convective rolls due to the external 
noise if shown for two different aspect ratios F = 72 and 10. This behavior 
is only observed near threshold (small e) and at small Q (~0.1~).2 V 2) 
and we therefore infer that the additive noise might play an important 
role {1'9'22) for this feature. The detailed mechanism for this behavior is 
unclear. 

In the present MSP experiment, e is always renormalized by Vc(Q) 
when Q is varied. The initial growth time VL becomes much longer very 
close to e = 0 at Q > 0 than that at the same value of e for Q = 0, i.e., the 
time the system stays at O = 0 (the unstable state without noise) becomes 
longer for Q , > Q > 0 .  Here Q ,  is a threshold and of the order of 
Q1,/2 2.5 v. Once the director deformation starts to grow, however, the 
macroscopic order is built up very quickly. It sometimes seems to be even 
hysteretic (which would go well with the results presented in ref. 40). This 
behavior appears to be opposite to that expected from the theory made 
for a spatially homogeneous system, but with a quadratic noise term. 
This therefore suggests a different modification of q~ from that predicted 
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Fig. 15. Wavenumber as a function of Q. (C)) aspect ratio F= 10, (O) F= 72. 
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for the Fredericksz transition. Clearly, further investigations are needed 
theoretically and experimentally on that point. 

We also observe that the nonlinear growth time vr linearly increases 
with decreasing Q (Fig. 16). The slope in the GP region is different from 
that in the WD region, and it is larger for GP. For the spatially 
homogeneous model 

~ = d u - b  lul2 u + u~ (8) 

such a linear dependence on the noise intensity has been predicted in ref. 1, 
but obviously the slope changes due to different spatial structures cannot 
possibly be obtained from Eq. (8). For the DSM state we find a more com- 
plicated nonlinear relation between growth time and noise intensity, but 
again v7 ~ decreases monotonically as a function of noise intensity. As one 
goes to the turbulent DSM state, an amplitude equation of the type (8) is 
therefore clearly no longer applicable. 

4. S U M M A R Y  A N D  C O N C L U S I O N  

The results obtained from the present study of multiplicative stochastic 
processes can be summarized as follows. 

An externally applied, spatially homogeneous noise with correlation 
time " fuZZ  c can (1)delay the onset of convection, (2)increase the 
threshold value for the convective onset, and (3)postpone the onset of 
spatial turbulence. 
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Furthermore, a different noise dependence of the growth time is obser- 
ved as the flow structure changes, e.g., from Williams domains to the grid 
pattern and to the dynamic scattering mode. A most interesting aspect of 
noise effects is the fact that they can lead to a different structure at the 
onset of the first instability [Vc (VN)] with an increase in VN as shown in 
Fig. 9. We call this process a structure change induced by external noise. 
The linear theory by Behn and Mueller (27) can give a destabilization of the 
instability in EHD. However, we stress that the threshold shift due to noise 
is not linear and changes its curvature as a function of noise intensity at 
several noise intensities, which is different from the predictions of the linear 
theory. We also note that the externally applied noise field destabilizes the 
convective system at TN>Z~, but stabilizes it for "gN<T~V. Successive 
changes in curvature of the threshold voltage as a function of the noise 
intensity have been observed and their dependence on the correlation time 
of the noise has been studied. 
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